您的位置 首页 > 新农资讯

勾股数的规律 勾股定理的应用

本篇文章给大家谈谈勾股数的规律,以及勾股定理的应用对应的知识点,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。

高中数学公式:勾股定理的应用

作四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点P.

∵D、E、F在一条直线上,且RtΔGEF≌RtΔEBD,

∴∠EGF=∠BED,

∵∠EGF+∠GEF=90°,

∴∠BED+∠GEF=90°,

∴∠BEG=180°?90°=90°

∴ABEG是一个边长为c的正方形.

∴∠ABC+∠CBE=90°

∵RtΔABC≌RtΔEBD,

∴∠ABC=∠EBD.

∴∠EBD+∠CBE=90°

又∵∠BDE=90°,∠BCP=90°,

∴BDPC是一个边长为a的正方形.

同理,HPFG是一个边长为b的正方形.

∴BDPC的面积也为S,HPFG的面积也为S由此可推出:a^2+b^2=c^2

作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.

分别以CF,AE为边长做正方形FCJI和AEIG,

∴G,I,J在同一直线上,

∠CJB=∠CFD=90°,

∴RtΔCJB≌RtΔCFD,

同理,RtΔABG≌RtΔADE,

∴RtΔCJB≌RtΔCFD≌RtΔABG≌RtΔADE

∴∠ABG=∠BCJ,

∵∠BCJ+∠CBJ=90°,

∴∠ABG+∠CBJ=90°,

∴G,B,I,J在同一直线上,

①观察3,4,5;5,12,13;7,24,25;…发现这些勾股数都是奇数,且从3起就没有间断过。计算0.5(9-1),0.5(9+1)与0.5(25-1),0.5(25+1),并根据你发现的规律写出分别能表示7,24,25的股和弦的算式。

②根据①的规律,用n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间的两种相等关系,并对其中一种猜想加以说明。

③继续观察4,3,5;6,8,10;8,15,17;…可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用上述类似的探索方法,之间用m的代数式来表示它们的股合弦。]在一个三角形中,两条边的平方和等于另一条边的平方,那么这个三角形就是直角三角形。

命题1:以已知线段为边,求作一等边三角形,高中生物。

命题2:求以已知点为端点,作一线段与已知线段相等。

命题3:已知大小两线段,求在大线段上截取一线段与小线段相等。

命题4:两三角形的两边及其夹角对应相等,则这两个三角形全等。

想要收藏更多高中各学科知识点与学习方法,请关注头条号【求知学园】

欢迎转发给更多有需要的朋友以及同学们!

关于本次勾股数的规律和勾股定理的应用的问题分享到这里就结束了,如果解决了您的问题,我们非常高兴。

本站涵盖的内容、图片、视频等数据,部分未能与原作者取得联系。若涉及版权问题,请及时通知我们并提供相关证明材料,我们将及时予以删除!谢谢大家的理解与支持!

Copyright © 2023